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1 Training Details

Scene Parsing: Following [58], we generate object proposals with pre-trained
Mask R-CNN. The Mask R-CNN module is pre-trained on 4k generated CLEVR
images with bounding box annotations only. We use ResNet-50 FPN as the
backbone and train the model for 30k iterations with a batch size of 8.
Question Parser and Concept Embedding: For the question parser, both
the encoder and decoder are LSTMs of two hidden layers with a 256-dim hidden
vector. The dimension of the word embedding is 300. The question parser is
pre-trained with 1k randomly selected question-program pairs. Please refer to
Appendix A in [41] for the specification of the domain-specific language (DSL)
designed for the CLEVR dataset to represent the programs. Following [41], we
set the dimension of the concept embedding as 64. During the joint optimization
of concept embedding and question parser, we adopt the Adam optimizer [31]
with a fixed learning rate of 0.001, and the batch size is 64.
Multi-dimensional IRT (mIRT): The mIRT model is implemented in Pyro [8],
which is a probabilistic programming framework using PyTorch as the backend.
We train the mIRT model using an Adam optimizer with a learning rate of 0.1.
The training of the mIRT model converges fast and usually in less than 1000 iter-
ations, therefore the running time is negligible compared to the time of training
the visual concept learner.
Training Steps: The length of each training epoch is determined by the number
of selected questions at this epoch. Questions are selected by the proposed train-
ing sample selection strategy, as illustrated in Section 3.5. We train the model
from the easiest samples. Specifically, we select 5k samples with less than two
concepts as the starting questions. As shown in Figure 1, the number of selected
questions grows along with the increasing model competence. In the end, the
model selected the few hardest questions and then converges, which also causes
early stop since no question is selected in the next epoch. Similarly, Figure 2
shows the accuracy of each concept at various iterations.
Training Speed: We train the model on a single Nvidia TITAN RTX card,
and the entire convergence time is about 10 hours, with 21 epochs (about 11k
iterations). All our models are implemented in PyTorch.
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Fig. 1. The average number of concepts of selected questions smoothly increases during
training, which suggests that the training follows an easy-to-hard curriculum.

2 Visualization of Selected Questions
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Fig. 2. The accuracy of each concept at various iterations. The concepts are grouped
by the attribute type.

Figure 3 shows model responses for the selected questions at various itera-
tions. They represent the smooth improvements for the question difficulty and
model competence during the training process. Specifically, in the early stages of
training, the model selects easy questions in simple scenes, which only involves
one or two concepts. Following the increase of model competence, the selection
strategy starts to tackle hard questions in complex scenes, consisting of multi-
ple concepts with spatial relationships. Without any extra prior knowledge, this
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Q: How many shiny 
objects are there? A: 2

Q: What number of other 
objects are the same 
material as the brown 
object? A: 1

Q: Is there anything else 
that has the same shape 
as the purple thing? A: no

Q: What material is the 
small object? A: rubber

Q: What size is the 
cylinder? A: small

Q: Are there fewer 
metallic spheres than 
large cyan objects? A: 
no

Q: Is the number of blue 
things right of metal cylinder 
less than the number of gray 
things? A: yes

Q: What is the size of the 
cylinder in front of the red 
shiny object? A: large

Q: The big object that is the 
same color as the big metal 
ball is what shape? 
A: cylinder

Iteration 5k Iteration 75k Iteration 400k Iteration 600k Iteration 750k

Q: The purple cube that is 
the same material as the 
purple cylinder is what size? 
A: large

Q: How many spheres are 
both to the right of the big 
metallic block and behind 
the tiny cyan block? A: 1

Q: How many green matte 
objects are left of the blue 
shiny thing? A: 1

Q: How many red objects 
are the same shape as the 
small yellow thing? A: 0

Q: What number of other 
objects are the same 
material as the large blue 
cube? A: 6

Q: There is a blue thing  
behind the big matte cylinder; 
what is its material? A: metal

Fig. 3. Example questions selected at different iterations (LB=-5, UB=-0.75). The
proposed model selects increasingly complex questions during the training progress.
It starts the learning with simple questions with one or two concepts and moves to
complex ones involving combined concepts with spatial relationships.

easy-to-hard learning process shows its smoothness and efficiency with automatic
guidance from the proposed curriculum.

3 Qualitative Examples of NSCL

Figure 4 visualizes several examples of the symbolic reasoning process by the
neural-symbolic concept learner. The questions of the first three examples are
correctly answered by our model, and the last example is a typical error case
caused by a small object under heavy occlusion.
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There is a blue thing behind 
the big matte cylinder; what 
is its material? 

Query[material]Filter[big, matte,cylinder] Relate[behind]  Filter[blue]

Rubber (0.84)

GT: metal

There is a tiny shiny 
sphere left of the brown 
cube; what color is it?

Filter[brown, cube] Relate[left] Filter[tiny, shiny,sphere]

Does the large purple 
shiny object have the 
same shape as the tiny 
object that is behind the 
matte thing?

Filter[large, purple, shiny] Filter[matte] Relate[behind] Filter[tiny]

No (0.93)

AEQuery[shape]

Brown(0.91)

There is a blue cylinder in 
front of the cyan shiny 
object; are there any gray 
cubes that are to the left 
of it? Filter[cyan, shiny] Relate[front] Filter[blue, cylinder] Relate[left] Filter[gray, cube]

Yes (0.98)

Query[color]

Exist

Fig. 4. Visualization of the symbolic reasoning process by the neural-symbolic concept
learner on the CLEVR dataset. The questions of the first three examples are correctly
answered by our model, and the last example is a typical error case caused by a small
object under heavy occlusion.
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based curriculum learning for neural machine translation. In: North American
Chapter of the Association for Computational Linguistics(NAACL-HLT) (2019)

48. Reckase, M.D.: The difficulty of test items that measure more than one ability.
Applied psychological measurement (1985)

49. Reckase, M.D.: Multidimensional item response theory models. In: Multidimen-
sional item response theory (2009)

50. Sachan, M., et al.: Easy questions first? a case study on curriculum learning for
question answering. In: ACL (2016)

51. Skinner, B.F.: Reinforcement today. American Psychologist (1958)
52. Spitkovsky, V.I., Alshawi, H., Jurafsky, D.: From baby steps to leapfrog: How less

is more in unsupervised dependency parsing. In: Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics. pp. 751–759. Association for Computational Linguistics
(2010)

53. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in neural information processing systems. pp. 3104–3112
(2014)

54. Tsvetkov, Y., Faruqui, M., Ling, W., MacWhinney, B., Dyer, C.: Learning the cur-
riculum with bayesian optimization for task-specific word representation learning.
ACL (2016)

55. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning (1992)

56. Wu, L., et al.: Learning to teach with dynamic loss functions. In: NeurIPS (2018)
57. Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., Tenenbaum, J.B.: Clevrer:

Collision events for video representation and reasoning. ICLR (2020)
58. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.: Neural-symbolic

vqa: Disentangling reasoning from vision and language understanding. In: Ad-
vances in Neural Information Processing Systems (2018)

59. Zhu, X.: Machine teaching: An inverse problem to machine learning and an ap-
proach toward optimal education. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence (2015)

60. Zhu, X., Singla, A., Zilles, S., Rafferty, A.N.: An overview of machine teaching.
arXiv preprint arXiv:1801.05927 (2018)


	Supplementary Materials for  A Competence-aware Curriculum for Visual Concepts Learning via Question Answering

